

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

DISTRIBUTION BEHAVIOR OF AMINOBENZOIC ACIDS BY EXTRACTION WITH DI(2-ETHYLHEXYL)PHOSPHORIC ACID AND TRIOCTYLAMINE

Yang-Sheng Liu^a, You-Yuan Dai^b

^a The Key Laboratory for Water and Sediment Science, Center for Environmental Science, Peking University, Beijing, China ^b Department of Chemical Engineering, Tsinghua University, Beijing, China

Online publication date: 30 November 2001

To cite this Article Liu, Yang-Sheng and Dai, You-Yuan(2001) 'DISTRIBUTION BEHAVIOR OF AMINOBENZOIC ACIDS BY EXTRACTION WITH DI(2-ETHYLHEXYL)PHOSPHORIC ACID AND TRIOCTYLAMINE', *Separation Science and Technology*, 36: 15, 3473 – 3485

To link to this Article: DOI: 10.1081/SS-100107915

URL: <http://dx.doi.org/10.1081/SS-100107915>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

DISTRIBUTION BEHAVIOR OF AMINOBENZOIC ACIDS BY EXTRACTION WITH DI(2-ETHYLHEXYL)PHOSPHORIC ACID AND TRIOCTYLAMINE

Yang-Sheng Liu^{1,*} and You-Yuan Dai²

¹Center for Environmental Science, Peking University,
The Key Laboratory for Water and Sediment Science,
Ministry of Education, Beijing 100871, China

²Department of Chemical Engineering, Tsinghua
University, Beijing 100084, China

ABSTRACT

Extraction based on reversible chemical complexation can be a high-capacity and high-selectivity technique for separating polar organic solutes from dilute solution. Aminobenzoic acid is a valuable chemical product. However, the downstream processing technology for the recovery of aminobenzoic acid presents a challenging separation problem. Aminobenzoic acid is resistant to biodegradation, so a method for treating wastewater that contains aminobenzoic acid needs to be developed. In this paper, we present a series of extraction equilibrium experiments for aminobenzoic acid with di(2-ethylhexyl)phosphoric acid (D2EHPA) dissolved in a mixture of *n*-octane and *n*-octanol and in trioctylamine dissolved in *n*-octanol. The effects of extractant concentration and pH on the distribution ratio are discussed in detail. Both (1:1) and (1:2) com-

*Corresponding author. Fax: 8610 62772048; E-mail: liu_ysh@263.net

plexes are formed in the extraction of aminobenzoic acid with D2EHPA. Expressions for the equilibrium distribution ratio are proposed, and the experimental data are in good agreement to the proposed expressions.

INTRODUCTION

Extraction based on reversible chemical complexation can be a high capacity and high selectivity technique for separating polar organic solutes from dilute solution (1). In recent years, researchers have expressed a continuous interest in the extraction of carboxylic acids (2,3), phenols (4), and amines (5,6) based on reversible chemical complexation. Several years ago, the extraction of organic compounds with an acid group and an alkaline group on the molecule attracted much attention from researchers, and many interesting results were presented (7–9).

Aminobenzoic acid is a valuable chemical product. Its principal commercial applications are in the dye and pharmaceutical industries. Either in the process of production or application, wastewater that contains aminobenzoic acid is always generated. This kind of wastewater is resistant to biodegradation, and therefore a suitable technology to treat the wastewater and recover the valuable products must be developed.

We used *p*-aminobenzoic acid (PABC) and *o*-aminobenzoic acid (OABC) as model acids. Di(2-ethylhexyl)phosphoric acid (D2EHPA) and trioctylamine (TOA) were chosen as extractants and *n*-octanol was chosen as a diluent. The effects of extractant concentrations and pH value on equilibrium are discussed.

MATERIALS AND METHODS

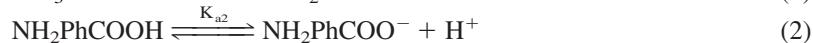
Materials

D2EHPA was a product of the Chemical Reagent Factory of Beijing (P.R. China). It was further purified by recrystallization with copper hydroxide as described by Patridge and Jensen (10). TOA was of chemical grade. Other reagents, such as PABC, OABC, *n*-octanol, sulfuric acid (H_2SO_4), sodium sulfate (Na_2SO_4), and sodium hydroxide (NaOH), were all of analytical grade.

Extraction Experiments

All of the extraction experiments were carried out in a bath shaker at 298 ± 0.5 K and 200 ± 2 rpm. D2EHPA solutions, prepared by dissolving D2EHPA in a mixture of *n*-octane and *n*-octanol, contained approximately 0.373–0.894 mol/L D2EHPA. TOA solutions, prepared by dissolving TOA in *n*-octanol, con-

tained approximately 0.232–0.464 mol/L TOA. The aqueous ionic strength was fixed at 0.2 mol/L. The organic phase (10 mL) and the aqueous phase (10 mL) were stirred in the bath shaker for 1 hour. After equilibration, the phases were separated by centrifugation.


Analysis

The pH of the aqueous phase was measured with a digital pH meter (model SA 520, USA). The concentrations of PABC and OABC in the aqueous solution were measured through the use of an UV spectrophotometer (model Hp8452, USA) at a wavelength of 266 nm and 310 nm, respectively. The concentration of PABC and OABC in the organic phase was calculated according to the mass balance of each. Experiments proved that the error was less than 2%.

RESULTS AND DISCUSSION

Behavior of Aminobenzoic Acids in Aqueous Solution

Aminobenzoic acid has 1 carboxylic group, 1 amino group, and a benzene ring that connects with the carboxylic group and the amino group. Two dissociation equilibria exist in aqueous solutions

The dissociation constants for Eqs. (1 and 2) can be described as

$$K_{a1} = \frac{[\text{A}^+][\text{H}^+]}{[\text{A}^+]} \quad (3)$$

$$K_{a2} = \frac{[\text{A}^-][\text{H}^+]}{[\text{A}]} \quad (4)$$

where A^+ , A^- are the cation and anions of aminobenzoic acid. A is the neutral molecule of aminobenzoic acid. The pK_{a1} and pK_{a2} of the model acids in aqueous solutions are listed in Table 1.

Table 1. Dissociation Constants of Model Aminobenzoic Acids

Dissociation Constants	PABC	OABC
pK_{a1}	2.50	2.11
pK_{a2}	4.87	4.95

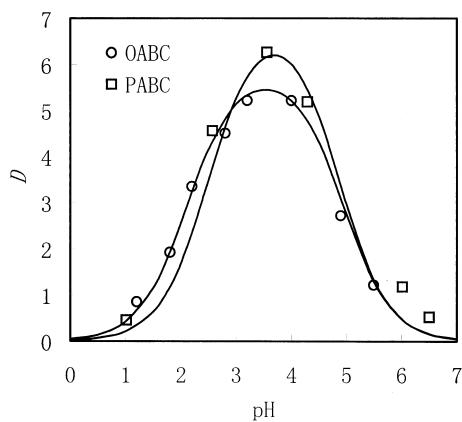
Data from (11).

Distribution Ratio Definition

The distribution ratio of aminobenzoic acids between the organic and the aqueous phases is defined as

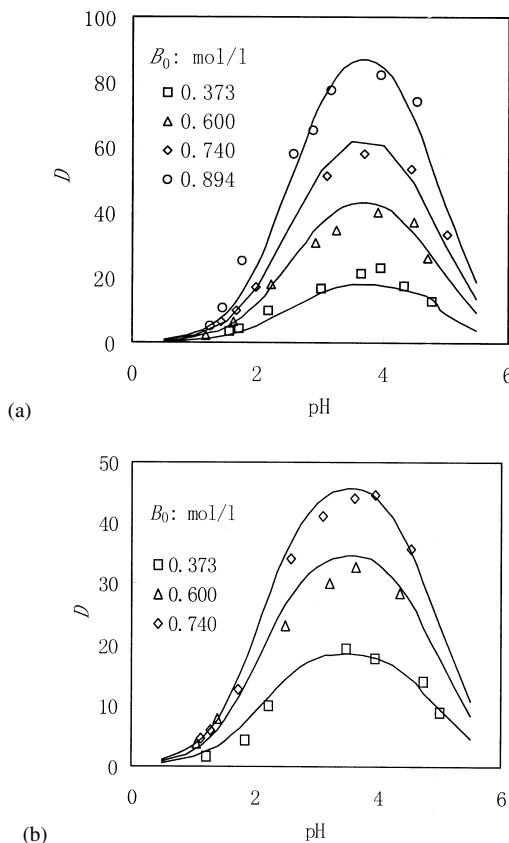
$$D = \frac{[A]_{(o)}}{[A]_{(w)}} \quad (5)$$

where $[A]_{(o)}$ is the concentration of aminobenzoic acids in the organic phase, and $[A]_{(w)}$ is the total concentration of all species of aminobenzoic acids in the aqueous phase.


Physical Extraction Behavior of Aminobenzoic Acid with *n*-Octanol

In all the experiments, *n*-octanol was chosen as diluent, so its extraction characteristics play an important role in the extraction of aminobenzoic acid by D2EHPA or TOA.

As shown in Fig. 1, with an increase of pH value, the distribution ratio D of OABC and PABC between the organic and the aqueous phases is represented a peak, and this peak is at the point of $\text{pH} = (\text{p}K_{a1} + \text{p}K_{a2})/2$. The solid lines in Fig. 1 are as predicted by the following equation:


$$D = D_m \varphi = D_m (1 + 10^{\text{p}K_{a1}-\text{pH}} + 10^{\text{pH}-\text{p}K_{a2}})^{-1} \quad (6)$$

where $(1 + 10^{\text{p}K_{a1}-\text{pH}} + 10^{\text{pH}-\text{p}K_{a2}})^{-1}$ is the molar fraction of the neutral molecule at a specific pH, and D_m is the distribution ratio of aminobenzoic acid between the organic and the aqueous phases when the molar fraction of the neutral

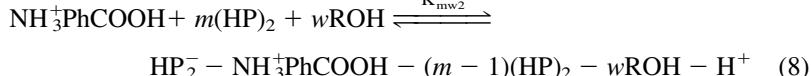
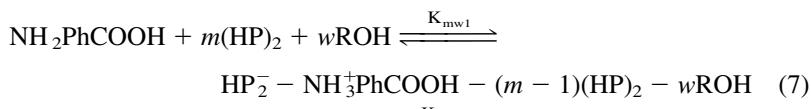
Figure 1. Physical extraction behavior of aminobenzoic acid with *n*-octanol.

Figure 2. Effect of the initial concentration of D2EHPA (B_0) and pH value on the distribution ratio: (a) Initial concentration of PABC is 7.29 mmol/L, and (b) initial concentration of OABC is 7.29 mmol/L.

molecule in the aqueous phase is 1.0. The values of D_m are 7.12 and 5.86 for PABC and OABC, respectively.

One can conclude from Fig. 1 and Eq. (6) that the neutral molecules of aminobenzoic acid were extracted with *n*-octanol.

Effect of D2EHPA Concentration and Equilibrium pH on Distribution Ratio



As shown in Fig. 2, at a constant extractant concentration, the distribution ratio of OABC and PABC between phases presents a peak with an increase of pH

value. An increase of the initial extractant concentration (B_0) increases the distribution ratio; this result is ascribed to enhancement of the extraction capacity of the organic phase.

Determination of the Extraction Model with D2EHPA

The reactions of D2EHPA with aminobenzoic acid can be expressed by Eqs. (7 and 8)

where Ph is C_6H_4 ; $(\text{HP})_2$ is dimeric D2EHPA; and ROH is *n*-octanol. K_{mw1} and K_{mw2} are equilibrium constants for Eqs. (7 and 8), respectively.

The extraction equilibrium constants (K_{mw1} , K_{mw2}) can be expressed as

$$K_{\text{mw1}} = \frac{[\overline{\text{PAR}}]}{[\text{A}](\overline{\text{HP}}_2)^m[\overline{\text{ROH}}]^w} \quad (9)$$

$$K_{\text{mw2}} = \frac{[\overline{\text{PAR}}][\text{H}^+]}{[\text{A}^+](\overline{\text{HP}}_2)^m[\overline{\text{ROH}}]^w} = K_{\text{mw1}}K_{\text{a1}} \quad (10)$$

where the organic-phase species are marked with an overbar. PAR is the complex; its structure is depicted in the right side of Eq. (7).

Equation (5) can be rewritten as

$$D = \frac{[\overline{\text{PAR}}] + [\overline{\text{A}}]}{[\text{A}^+] + [\text{A}] + [\text{A}^-]} = \frac{K_{\text{mw1}}[(\overline{\text{HP}}_2)^m[\overline{\text{ROH}}]^w + \phi D_m]}{1 + 10^{\text{p}K_{\text{a1}} - \text{pH}} + 10^{\text{pH} - \text{p}K_{\text{a2}}}} \quad (11)$$

where $[\overline{\text{A}}]$ is the neutral molecule concentration in the organic phase; this part of the neutral molecule is chemically extracted by *n*-octanol. ϕ is the volume fraction of *n*-octanol in the bulk solvent.

By rewriting Eq. (11) and taking the logarithm of both sides, we obtained the following equation:

$$\begin{aligned} \log[D(1 + 10^{\text{p}K_{\text{a1}} - \text{pH}} + 10^{\text{pH} - \text{p}K_{\text{a2}}}) - \Phi D_m] \\ = \log K_{\text{mw1}} + m \log[(\overline{\text{HP}}_2)^m] + w \log[\overline{\text{ROH}}] \end{aligned} \quad (12)$$

For convenient expression, the left side of Eq. (12) was abbreviated to $\log D'$. The plots of $\log D'$ vs. $\log[(\overline{\text{HP}}_2)^m]$ and $\log[\overline{\text{ROH}}]$ are shown in Figs. 3 and 4.

Figure 3. Plots of $\log D'$ vs. $\log[(HP)_2]$.

By fitting the least-square data, we obtain the slopes, i.e., the values of m and w , in Eq. (12). The values of m were 1.72 and 1.27 for PABC and OABC, respectively. The values of w were 0.06 and 0.01 for PABC and OABC, respectively.

Because the values of w for PABC and OABC were very close to zero, one can conclude that *n*-octanol makes little contribution to the formation of the complex in the organic phase, and it acts as a polar solvent to and physically extracts a part of neutral molecules of aminobenzoic acid.

The values of m for PABC and OABC were $1 < m < 2$, which suggests both (1:1) and (1:2) complexes formed with D2EHPA in the extraction.

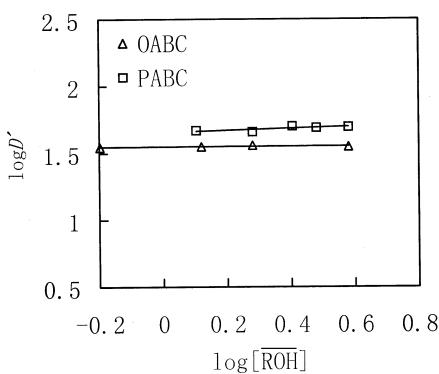
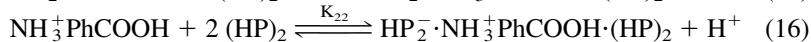
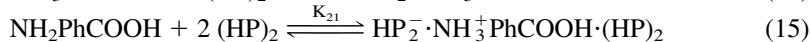
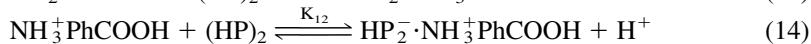
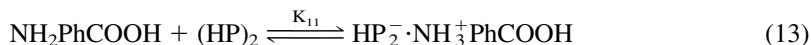






Figure 4. Plots of $\log D'$ vs. $\log[ROH]$.

According to the Eqs. (7 and 8), the stoichiometry of the extraction can be expressed as

where $\text{HP}_2^-\cdot\text{NH}_3^+\text{PhCOOH}$ is the (1:1) complex, expressed by PA_{11} in subsequent equations. $\text{HP}_2^-\cdot\text{NH}_3^+\text{PhCOOH}\cdot(\text{HP})_2$ is the (1:2) complex, expressed by PA_{12} in subsequent equations. K_{11} , K_{12} , K_{21} , and K_{22} are the respective extraction equilibrium constants, and they can be described as

$$K_{11} = \frac{\overline{[\text{PA}_{11}]}}{[\text{A}]\overline{[(\text{HP})_2]}} \quad (17)$$

$$K_{21} = \frac{\overline{[\text{PA}_{12}]}}{[\text{A}]\overline{[(\text{HP})_2]^2}} \quad (18)$$

$$K_{12} = K_{11}K_{a1} \quad (19)$$

$$K_{22} = K_{21}K_{a1} \quad (20)$$

Therefore, Eq. (11) can be rewritten as

$$D = \frac{\overline{[\text{PA}_{11}]} + \overline{[\text{PA}_{12}]} + \overline{[\text{A}]} }{[\text{A}^+] + [\text{A}] + [\text{A}^-]} = \frac{K_{11}\overline{[(\text{HP})_2]} + K_{21}\overline{[(\text{HP})_2]^2} + \phi D_m}{1 + 10^{pK_{a1}-pH} + 10^{pH-pK_{a2}}} \quad (21)$$

We used computer programming to optimize the following object function so that $E(K_{11}, K_{21})$ is at a minimum

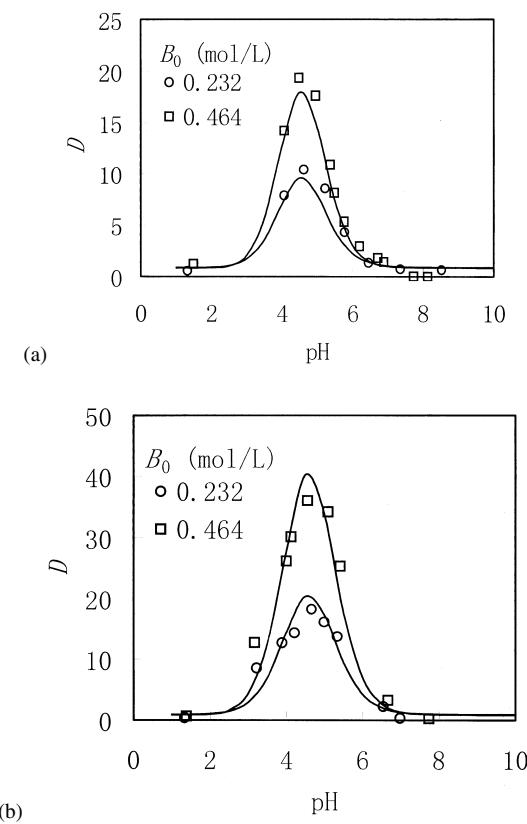
$$E(K_{11}, K_{21}) = \sum_{i=1}^{i=n} (D_{\text{exp},i} - D_{\text{cal},i})^2 \quad (22)$$

where $D_{\text{exp},i}$ is the experimental value, and $D_{\text{cal},i}$ is the calculated value from Eq. (21). K_{11} and K_{21} was 22.93 L/mol and 103.55 L²/mol² for PABC, and it was 45.33 L/mol and 31.50 L²/mol² for OABC, respectively.

When the ratio of the volume of organic phase to that of the aqueous phase is unity, the distribution ratio (D) of aminobenzoic acid between the organic phase and the aqueous phase can be calculated through the use of the following equations:

$$C_0 = (1 + D)[\text{A}](1 + 10^{pK_{a1}-pH} + 10^{pH-pK_{a2}}) \quad (23)$$

$$B_0 = [\overline{[(\text{HP})_2]} + K_{11}\overline{[(\text{HP})_2]}[\text{A}] + K_{21}\overline{[(\text{HP})_2]^2}[\text{A}] \quad (24)$$


$$D = \frac{K_{11}\overline{[(\text{HP})_2]} + K_{21}\overline{[(\text{HP})_2]^2} + \phi D_m}{1 + 10^{pK_{a1}-pH} + 10^{pH-pK_{a2}}} \quad (25)$$

where C_0 is the initial concentration of aminobenzoic acid in the aqueous. B_0 is the initial concentration of D2EHPA in the organic phase. The values of K_{11} and K_{21} for PABC and OABC are different in these equations. The solid lines in Fig. 2 are as predicted by this model.

Effect of TOA Concentration and Equilibrium pH on Distribution Ratio

As illustrated in Fig. 5, at a constant extractant concentration (B_0), the distribution ratio presents a peak with the increased pH. An increase of the initial extractant concentration (B_0) corresponds to an increase in the distribution ratio.

Figure 5. Effect of the initial concentration of TOA (B_0) and pH value on the distribution ratio: (a) Initial concentration of PABC is 7.29 mmol/L, and (b) initial concentration of OABC is 7.29 mmol/L.

These extraction phenomena are similar to those shown in Fig. 2, but the peak shifts toward the higher pH value in Fig. 5 because the basicity of TOA is higher than that of D2EHPA.

Determination of the Extraction Model with TOA as Extractant

The extraction equilibria with TOA can be described as

where R_3N is TOA. Aside from the 2 equilibria equations, 2 dissociation equilibria of aminobenzoic acid, Eqs. (1 and 2), and a physical extraction equilibrium can be determined.

The equilibrium constants in Eqs. (26 and 27) can be expressed as

$$K_1 = \frac{[R_3NH^+]}{[H^+] \cdot [R_3N]} \quad (28)$$

$$K_2 = \frac{[(R_3NH^+)COO^- phNH_2]}{[R_3N] \cdot [NH_2phCOOH]} \quad (29)$$

According to the mass balance of extractant and solute, the following equation, along with Eq. (23) can be obtained:

$$B_0 = [R_3N] + [R_3NH^+] + [(R_3NH^+)COO^- PhNH_2] \quad (30)$$

After a series of mathematical calculations for an equation group that consists of Eqs. (3,4,23,28,29, and 30), the expression for D can be obtained

$$D = \frac{\phi D_m \chi + K_2 B_0 - K_2 C_0 - \chi}{2\chi} + \frac{\sqrt{\alpha^2 + 4\beta}}{2\chi} \quad (31)$$

where

$$\alpha = K_2 C_2 - K_2 B_0 + \chi - \phi D_m \chi \quad (32)$$

$$\beta = (K_2 B_0 + K_2 \phi D_m C_0 + \phi D_m \chi) \chi \quad (33)$$

$$\chi = (1 + K_1 10^{-pH})(1 + 10^{pK_{a1}-pH} + 10^{pH-pK_{a2}}) \quad (34)$$

By using the computer programming to optimize the following object function, we kept $E(K_1, K_2)$ at a minimum

$$E(K_1, K_2) = \sum_{i=1}^{i=n} (D_{exp,i} - D_{cal,i})^2 \quad (35)$$

where $D_{exp,i}$ is the experimental value, and $D_{cal,i}$ is the value calculated from Eq. (31). K_1 and K_2 can be found to be 17 000 L/mol and 81.0 L/mol for PABC and 17 000 L/mol and 154.0 L/mol for OABC, respectively.

When the volume ratio of the organic phase to the aqueous phase is unity, the distribution ratio (D) of aminobenzoic acid between the organic phase and the aqueous phase can be calculated by using the following equations and Eq. (23):

$$D = \frac{\phi D_m \chi + K_2 B_0 - K_2 C_0 - \chi}{2\chi} + \frac{\sqrt{\alpha^2 + 4\beta}}{2\chi} \quad (36)$$

$$B_0 = [\overline{R_3N}] + K_1 \cdot 10^{-pH} \cdot [\overline{R_3N}] + K_2 [\overline{R_3N}] \cdot [A] \quad (37)$$

where the expressions of α , β , and χ are shown in Eqs. (32, 33, and 34). The solid lines in Fig. 5 are as predicted by the model.

CONCLUSIONS

In this paper, the extraction equilibrium of aminobenzoic acid with D2EHPA dissolved in the mixture of *n*-octane and *n*-octanol and TOA dissolved in *n*-octanol was presented in detail. D2EHPA and TOA were chosen as extractants, and similar extraction phenomenon was obtained for both compounds. At a constant extractant concentration (B_0), the distribution ratio presents a peak with an increased pH value. An increase of the initial extractant concentration (B_0) is associated with an increase in the distribution ratio. The peak of D shifts toward the higher pH value when TOA acts as the extractant because the basicity of TOA is higher than that of D2EHPA. Both (1:1) and (1:2) complexes formed in the extraction of aminobenzoic acid with D2EHPA. The extraction equilibrium constants were obtained. Expressions for the equilibrium distribution ratio with D2EHPA and TOA were proposed. The experimental data present good agreement to the obtained models, as can be seen from Figs. 2 and 5.

NOMENCLATURE

A^+	cation of aminobenzoic acid
A^-	anion of aminobenzoic acid
A	neutral molecule of aminobenzoic acid
$[A]_{(o)}$	concentration of aminobenzoic acid in the organic phase (L/mol)
$[A]_{(w)}$	concentration of aminobenzoic acid in the aqueous phase (L/mol)
B_0	initial extractant (D2EHPA or TOA) concentration in the organic
C_0	initial aqueous concentration of aminobenzoic acid (mol/L)
D	distribution ratio (dimensionless)
K_1	equilibrium constant in Eq. (26) (L/mol)
K_2	equilibrium constant in Eq. (27) (L/mol)
K_{11}	equilibrium constant in Eq. (13) (L/mol)
K_{12}	equilibrium constant in Eq. (14) (dimensionless)

K_{21}	equilibrium constant in Eq. (15) (L ² /mol ²)
K_{22}	equilibrium constant in Eq. (16) (L/mol)
K_{a1}, K_{a2}	dissociation constant of aminobenzoic acid (L/mol)
(HP) ₂	D2EHPA dimer
PA ₁₁	(1:1) complex of D2EHPA combined with aminobenzoic acid
PA ₁₂	(1:2) complex of D2EHPA combined with aminobenzoic acid
ϕ	volume fraction of <i>n</i> -octanol in bulk solvent
φ	molar fraction of neutral molecule in Eq. (6)
α, β, χ	symbols equivalent to the right-hand terms of Eqs. (32–34)

ACKNOWLEDGMENTS

Valuable advice from and discussions with Professors Lilian Xu and Weizhi Li, of the Analytical Center of the Chemical Engineering Department, are greatly appreciated.

REFERENCES

1. King, C.J. Separation Process Based on Reversible Chemical Complexation. In *Handbook of Separation Process Technology*; John Wiley & Sons: New York, 1987; 760–774.
2. Zhao, H. Study on the Extraction of Acetic Acid Based on Reversible Chemical Complexation. M.S. thesis, Department of Chemical Engineering, Tsinghua University, Beijing, 1991.
3. Mahajani, S.M. Reactions of Glyoxylic Acid with Aliphatic Alcohols Using Cationic Exchange Resins as Catalysts. *React. Funct. Polym.* **2000**, *43* (3), 253–268.
4. Dilibahar, A.; Yang, Y.Y.; Dai, Y.Y. Study on the Extraction Mechanism of Carboxylic Acids. *J. Chem. Eng. of Chinese Universities* **1993**, *7* (2), 174–179 (in Chinese).
5. Wen, M.; Yang, Y.Y.; Dai, Y.Y.; Wang, J. D. Extraction Mechanism of Carboxylic Acids with TOA. *Chinese Journal of Industry and Engineering* 1998, *48* (3), 303–315.
6. Su, H.J. Study on the Extraction Mechanism of Aniline Homologen. Ph.D. diss., Department of Chemical Engineering, Tsinghua University, Beijing, 1996.
7. Liu, Y.S.; Dai, Y.Y.; Wang, J.D. Distribution Behavior of *L*-Phenylalanine by Extraction with Di(2-Ethylhexyl)phosphoric Acid. *Sep. Sci. Technol.* **1999**, *34* (11), 2165–2176.
8. Yang, Y.Y.; Liu, Z.Y.; Dai, Y.Y. Extraction of *p*-Aminophenol Based on Reversible Chemical Complexation. *J. Chem. Eng. of Chinese Universities* **1997**, *11* (4), 355–360.

BEHAVIOR OF EXTRACTED AMINOBENZOIC ACIDS

3485

9. Teramoto, M.; Miyake, Y.; Matsuyama; H.; Nara, H. Extraction Mechanism of Amino Acids with Organophosphorus Extractant. *Proc ISEC '90*, **1990**, II, 1803–1808.
10. Partridge, J.A.; Jensen, R.C. Purification of Di(2-ethylhexyl)phosphoric Acid by Precipitation of Copper (II) Di(2-ethylhexyl)phosphate. *J. Inorg. Nucl. Chem.* **1969**, *31*, 2587.
11. Zizhi, C. *Basic Organic Chemistry*; Science Press: Beijing, 1986.

Received July 2000

Revised November 2000

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SS100107915>